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THE SERIES OF POLYNOMIALS IN THE PROBLEM
OF THREE BODIES

Byulleten' In-ta Teoreticheskoy Astronomii by V. A. Brumberg
Tom 9, No. (107), pp.234-256,
U.S5.S.R., 1963.

The series of polynomials in the problem of three bodies converging for
any real moment of time are investigated by numerical methods. The convergence
coctficients, which transform the Taylor series with some finite convergence
circle in a series of polynomials converging for any point within thc Mittag-
Leffler rectilinear star of generative function are given in Section 1.

Such power-polynomial series by mean anomaly are constructed in Section 2
for the elliptic three-body problem.

For the sake of comparison, the Sundman series, related to the same prob-
lem, are analyzed in Section 3.

Finally, the series of power-polynomials by the variable regularizing the
double collisions is dealt with in Section 4.

*

INTRODUCTION.

The methods discussed in the present work are mainly half a century old,
and possibly more. However, the utilization of fast computers, only made pos-
sible in our time, allows a different approach to these methods, and in numerous
cases a significant broadening of the area of their application.

Assume that f(w) is a certain analytical function, locally given by the
Taylor series

f(w) =a; + ajw + a,w? +..., (1)

converging in a certain circle with center at coordinate origin. According to
the most general theory on analytic continuation, brought forth by Littag-Leffler
in 1898 (12, 13], f(w) may be represented in any region, 4dmternal relative to the
rectilinear star of that function, by uniformly converging series of polynomials



whose coefficients linearly degenerate through the coefficients of series (1).
In other words, there exists for any point w inside the Mittag-Leffler recti-
linear star a sequence of polynomials f (w) (n =1, 2, ...), converging to
f(w), where
£ @)= e, 1 eapi- . ctia, w. 2)
The convergence factors c(™) are not dependent upon the form of function
f(w) and they are in their turfl the coefficients of polynomials

gn <u)) = C(()") —+ C(l")m -+ '. ; L c(,:,’,‘”m", (3)

uniformly converging to the value of the function

g(w)= 10 (4)

provided only w does not assume real values from 1 to «, Volterra [30] called
at once attention to the significance of Mittag-leffler theorem for the problem
of dynamics, noting that if the coordinates of the considered dynamic system
are analytical functions of time or of a certain equivalent variable in the
region encompassing the entire real axis, they may be expanded in series of
polynomials converging for any real value of that variable.

The more rapid the convergence of polynomials' (3) sequence to function g(w),
the faster, generally speaking, the convergence of polynomials (2) to function
f(w). Indeed, it follows from the Cauchy integral

r —_—

. N 1 1 - (w)
S = falx) =gy f[i“‘f;‘—’gn(ﬁ}>:J£;r-dw, (5)
where x is any point of function's f(w) rectilinear star, and ' is the closed
curve of length L, located within the star, surrounding the point x and such
that any ray, emanating from the origin, intersccts this curve at one and only
point. When w describes the curve I' , x/w describes the path not having any

common point with the part of the real axis from 1 to «. This is why there is
for any € > 0 N = N(e) such that for n > N the absolute value of the differ-
ence standing in the integrand (5), wil!! Lc¢ <e. lence precisely follows

0= 5 max [

v (6)

Picard [18] and Painleve [16] pointed in 1899 to the close link between the
expansion of analytical functions in series of polynomials and the integration of
differential equations by the Cauchy-Lipschitz method. In this method, expounded
in detail by Picard [20], for example, the following sequence of functions x{®

is constructed (. 1) ) oy .«
1) — Xy 2
X‘. —"x; +(Pi(0’ lk) n'

w s
xg"’ 2) — x('."- ) (P.' (.-_".- ; x(k". l)) B ,

e (7)

— n—1 n\ v
x(‘n, n) — X(‘."' n—1) 4. (?‘ ( ~ w; x(kn, n 1)) T




which converges uniformly to the solution xi(w) of the system of differential
equations (as n -» <)

d.«\"' - . . .
do --—‘?.'(U), P ST X,,,) (l—l, 2,..., m) (8)

with initial conditions x,(0)=x®. [f the right-hand parts of these equations

do not clearly depend on v and are polynomials from variables xj, the Cauchy-
Lipschitz method does not provide the possibility of determining these regions.=x
But if, in particular, it is known from either additional considerations that
functions x (w) are bounded in absolute value from above over the entire real
axis, the series of polynomials constructed for them by the Cauchy-Lipschitz
method converge for any real value of w.

Sundman [27] demonstrated in 1912 that if in the three-body problem the
vector of areas is not zero, the rectangular coordinates of the bodies, the velo-
city components and the time are analytical functions in an infinite band of
width 2@ and symmetrical relative to the real axis of the complex plane of the
variable w, regularizing the double collisions. Further Sundman applied the Poin-
caré's mapping of the indicated band on a circle of unitary radius of the plane

. _ 213_ E:_O_ _exp (mwf2Q) —1
C= In 4 0_—;;p(nw/29)+1 (9)

and obtained the representation of the general solution of the three-body problem
in the form of power series by @, converging for any |6]| < 1, and by the same
token, also for any real moment of time t. It was clear, however, that series of
such a type are of little validity for the clarification of the entire pattern of
motion in the problems of dynamics. But it remained unknown, whether or not they
could be utilized for the numerical solution of the three-body problem. In 1933
Belorizky [4] gave a negative response to this question. He revealed on the
example of partial Lagrange solutions of the three-body problem an extremely slow
convergence of Sundman series (in the cases considered by him it is necessary to
take from 10819 to 1081 ‘terms of series to obtain one correct sign over less
than one sixth of the convolution). In 1953-1955 Vernic [28, 29] undertook the
attempt to revise the Belorizky results and practically utilize the general solu-
tion of the three-body problem. However,K he admitted a whole series of impreci-
sions and, in particular, erroneously asserted that the series by powers w converge
on the entire plane w. These errors, discovered by G. A. Merman in 1956 [2], de-
preciated nearly entirely the Vernic works.

In his work Sundman himself did not mention the possibility of representing
the general solution of the three-body problem in the form of polynomial series.
To that possibility, stemming directly from his fundamental theorem, pointed di-
rectly Sundman's contemporaries, and first of all Picard [19]. In later litera-
ture only separate reminders are encountered (for example, Happel, 1941, [8]). In
our times this question was again raised in the Merman 1958 work [3], where the
equations for the three-body problem are reduced to the polynomial form and for
the case of division of three-body motion in two nearly Keplerian motions
an estimate ot error, resulting from the substitution of the exact solution by
Cauchy-Lipschitz polynomials, 1s constructed.

* for it leads directly to the expansion of functions x;(w) in series of
polynomials converging in respective rectilinear Mittag-Leffler stars.



These investigations served as stimulus to conducting the present work.
Its object is the effective construction of series of polynomials in the three-
body problem and the study of the possibilities of their utilization for the
numerical solution. Preliminary analysis has shown that the algorithm of poly-
nomial sequence construction by the Cauchy-Lipschitz method is considerably
more complex than that for type-(2) polynomials. Moreover, the former converge
very slowly. It is true, however, that the improvement of convergence may be at-
tained by the application of the Cauchy-Lipschitz method's variant proposed by
Picone in 1932 [21]. In the assumption that the right-hand parts of Egs.(8) have
continuous partial derivatives by their arguments to the (v + 1)-st order inclu-
sive (v > 1), Picone applies the Cauchy-Lipschitz method to the system

dlx;

dwd “‘"PU)(“’ SRR xm) (i=12,..., m Jj=1, 2"---1 V)) (10)
where o O o)
. _ 9% 09;
P =1¢,, ‘?(.'j“)-—-——&r—k ey Peo
k=1
and constructs the sequence of functions x{»" in the following form:
v
1 J
(n, ])= (0) — ) - '“)\ .‘i
X, x‘—IZ”t{) ~’(n>'

=1

.

(1, 2) — »(m 1) VJ_ (7} (_(_u__ . (ﬂ,‘l))(_‘ﬂ_ /
* * +—jl TR n)'

v
1 afn—1 J
(1) — 5elny n—1) — N {2 , n—1 ol
xt X S ARL ( ——wj X )>( )

§
J=1

Picone estimates the error stemming f{rom the substitution of the exact solu-
tion xj(w) of the function x{»", and finds that this error decreases with the rise
of n as 1/nV, while in the standard Cauchy-Lipschitz method, the rate of error
decrease is proportional to 1/n, However, the Picone variant is practically effect-
ive only in the case of simple rlght-hand parts of Egs.(8), which cannot be said
of the right-hand parts of the equations ot motion of the three-body problem,
reduced to the polynomial form. All these causes compel us torenounce the Cauchy-
Lipschitz polynomials and turn to type-(2) polynomials, The coefficients a, of
the Taylor series are found relatively simply from recurrent relations, whife
those of convergence cM could be computed only once, recorded on a magnetic tape
and then be object of Utilization at any time.

All the computations comnected with the present work were made with the aid
of computer M-20. By its contents the work itself is divided in four sections.
In the first section the convergence factors ckn) are found, in the second the
series of polynomials are constructed for the ™ two-body problem, in the third
section the Sundman series for the two-body problem are investigated and in the
fourth the series of polynomials in the three-body problem are computed.



The setup of Section 3 is called for by the following circumstance. As
was shown by Belorizky, the exclusively slow convergence of Sundman series is
explained by two causes. The first of them consists in th character itself ’
of the Poincaré transformation, setting in correspondence to even small positive
values of w the values of 6 quite close to the unity. (Note that then the interval
(2, =) is transferred into the interval(~0.0656,1) of the axis 8. The second
cause is the smallness of the number ¢.* This estimate is valid for any types ol
motion in the three-body problem and it is unquestionably strongly underrated.
In this connection it appeared to be of interest to corroborate the qualitative
estimates of Belorizky and to construct the Sundman series for the two-body
problem , where the quantity @, the minimum distance of singular points in the
plane w from the real axis, is also precisely known. Obviously, the requirement
of transition to the regularizing variable drops off, and it is sufficient to
assume for the value of w, for example, the mean anomaly M.

Section 1. Computation of Convergence
Factors

Contrary to the coefficients of Taylor series, those of polynomial series
and their poYe§s have an innumerable multiplicity of values. A large quantity
of various ckn is known in literature (for example, Mittag-Leffler, 1900-1920
[14]; Le Roy, 1900 [10]}, Lindelof, 1903 [11], Perron, 1922 [17], and their number
could be increased without difficulty. Some of these c{n) were computed by us.
However, the sequence of polynomials (3), constructed ;§th their aid, converges
too slowly, and these ¢, (n) were rejected. There is hardl¥ ?ny sense in bringing
them up here. Generally, ideal would be such values of cx"™, which assure the
maximum rapid convergence to function g(w) for the minimum order of polynomials (3).

One of the most practical expansions of function g(w), encountered in litera-
ture, is the Goursat expansion (see Goursat,1903 [7]), constituting the result of
application of the Cauchy-Lipschitz method to the differential equation

%& = g, (13)
W

which determined function (4) at the initial condition g(0) = 1. It is natural
to attempt to generalize the Goursat method and to apply to Eq.(13) the Cauchy-
Lipschitz method with the Picon variant (modification).

Assume that v is an arbitrary, but fixed natural number (y;zly The system
(10) will be in the given case

—E=jlg* . (=1, 2,.., (14)

With the aid of recurrent expressions

G(w)=1, Giy1(0)= kz_:o o*[G, (w)J+! (15)
let us introduce the polynomials )
* Note that in his estimate Beloritzky was resting on the estimate of

made by Sundman.



ny

G, (0) = 2, bMw*, (16)

k=0

of which the coefficients are whole positive numbers, and the power m_ is deter-
mined by the formula n

m, = (v + 1)“-— 1. (17)

It is not difficult to be convinced that polynomials (3), sought for, are
linked with polynomials (16) by the relation

=G {©
& ()=G.(3) (18)

and consequently,

1
C(k") — ___’: b‘kn)'
n

(19)

Further, it is obviously secn that if a certain function ¢ (w) satisfies the
functional equation

Zeoe(Z e )=Z ot (20)

it must also be satisfied by the function

v

()= X oFlp (@) (21)

k=0

But, polynomial G, (w) satisfies Eq.(20). Consequently, all the polyno-
mials Gn(w) satisfy it also, i. e.,

v

S o G ot )= B (G (22)
k=0 k=0

k=0

Combining (15) and (22), we obtain
Gu+l (U)') = 2 w Gn ( 2 mk+l> . (23)
. k=0 k=0

Therefore, for the determination of coefficients bén) we may utilize any
of the three relations (15), (22) and (23). In particular, relation (22) is
interesting in that it contains the coefficients of only one polynomial and it
thus does not require: the preservation in computer's memory of coefficients

of the preceding polynomial. Per contra, relation (23) leads to a linear con-
nection between the coefficients of two neighboring polynomials, and on the
strength of that, they were given preference.

If we equate the coefficients at identical powers w when substituting




directly (16) into (23), we obtain

Bt = X g (m=1, 2,..., m,,), (24)

k=k,

when the limits of summation are defined by formulas

k1==_max{0, m—\:w },

va-1

k, = min {mv mn}) (ZS)
and dk(m)are positive whole numbers serving as coefficients in the expression

( 5 wk> SRS (26)

k=0 k=0

When operating with computers, it is more practical to handle outright
the coefficients ck(n). For them the law (24) will be written in the form

(k-+-1)

3 d
(n 1)_ -‘ m-—K "
cm+ B (n_‘ 1/ (n+ 1)'"_!:0() (m —"'1, 2,..., m,,+1). (27)
= I

As to the numbers dk(m), it follows from (26) that

min{k, vm}

d’(‘m.i-l) — E dim)' k=1, 2,..., vm—v) (28)

I=max {0, k—v}

and the solution of this difference equation will be

[ : I
vol
(m) ___

dk -— ‘_J ( 1) Cka+m-l—) (v+1) (k = 0,. 1, T Vm). (29)

When computing dﬁm) the equality

A =d%. (k=0,1,..., [7]). (30)

was also utilized.

Formulas (27) and (29) fully r?s?lve the problem of finding the conver-
gence multipliers chosen by us, Note that all v + 1 coefficients of
polynomials g (w) and the first v + 1 youngest coefficients of polymomials g;(w)
are equal to the unity (ck(n)= 1 for k=0, 1, ..., vand n > 1). Subsequent
coefficients decrease monotonically through the value ¢i) =nr—ms, The initial
rate of this decrease diminishes as the number n of the polynomlal increases for

a fixed v, and with the increase of the number V for a fixed n. There is obvious-
ly no necessity to compute all the czn to k = m , and we may stop at the number
k giving a negligibly small term in the polynomials (2). The introduction of
scale factors into the linear law (27) allows us to materialize the computdtion
of ck(n)for any numbers k. But, for the sake of simplicity, we limited ourselves

[P ¥ 8



to the computation of cﬁn) through the fulfillment of one of the conditions:
k=m or c"<e (km,), where ¢ is a small number fixed in advance. The
program composed foresaw the computation of ck(n)by the given parameters v and
e through the desirable number of polynomials n, and also the computation of
the values of all the polynomials g,(w) at several arbitrarily chosen points.
In the present work we bring up the values of g (w) at the points « =—1 and
= 0,9. The first of these points lies at the Boundary of the circle of Taylor
series convergence of function g (w), and the other lies near the singular point
= 1 of this function.

In the case v = 1, which corresponds to polynomials of the standard Cauchy-
Lipschitz method, the formulas derived are simplified. Namely, at v =1 -

dM=Ck, /q:[_,?i:tv kr=min {m, 2"—1}. (31)

The computations were conducted at the outset according to a program espe-
cially designed for that case. Certain results of these calculations consist
in the number k* of coefficients ck(n), corresponding to the limit e = 10’9,
and the values of g, (w) for w = —1 and w = 0.9 are compiled in Table 1.As in
most of the subsequent tables, the following order of number writing is admitted:
51gn of the number, sign of the order, order, mantissa. As may be seen, the values
-1) and g; (0. 9) converge very slowly to the limit values g(—1) = 0.5 and
?0 9) = Mlhis was precisely the compelling reason for us to_abandon the
usual Cauchy Lipschitz method and search for more effective c(1) with the aid
of the Picon modification. k

The coefficients ﬁn) of the first eight polynomials gn(w) for the values
f v from 1 to 9 were computed by the general program. For the values v = 10 and

= 11 the coefficients cy''“were computed for the first twenty polynomials gp(w).
We assumed everywhere e = 10 10 Tt may be seen from Table 2 how the number of
coefficients Ck( )increases with the rise of n and v. In Table 3 we compiled
the values of (—1) and g, (0.9) forn=1, 2,..., 8 and v = 2, 3, 9.
The values of g (w) forv= 1 computed accordlng to the general program ‘with

= 10710, coincided with the corresponding values of Table 1. Finally, given in
Table 4 are the values of g,(w) for v = 10 and v = 11, and also the number of terms
k* in the corresponding polynomials. It is interesting to note that the polyno-
mials g,(—1) with odd v approach g(—1) trom below, and g,(—1) with even v —
from above.

From the analysis of these data it fcllows that the polynomials g,(w) with
great v and small n are considerably more effective than the polynomials with
small v and great n. At the same time it is not advantageous to take too great
v on account of the large number of terms in the corresponding polynomials. The
choice of required polynomials was influenced also by the circumstance that the
program for the computation of coefficients a) in the problem of three bodies
allowed us to determine these coefficients for k = 0, 1,..., 157. This is why

r the subsequent work we selected and recorded on a magnet1c tape the coefficients

E , 4, 5) for the values v = 9 and v = 10.

’



TABLE 1
Values and Number of Terms in Polynomlalb gn(w) for
=1 and € = 10
n k* &n (-1 &n (09) n k* n ("'1) n (09)
r . _
1 2 “+-+00 606000000 | ~+~+01 196000000 21 89 | 4-+-00 491539326 | +-+-01 582226813
2 4 375000000 239612500 22 93 491933266 591047720
3 8 42859303 4 278657470 23 97 492292147 599475887
f - 16 449536998 311573145 24 101 492620449 607539018
5 22 461170436 340259517 25 104 492921923 615262079
-6 27 468306476 365767913 26 103 493199729 © 622667648
7 32 473219912 388763313 21 111 493456548 629776210
8 37 . 470811488 409702747 28 115 493694673 636606412
9 41 479552248 428918640 29 119 493916073 643175275
10 45 481712879 446662933 30 122 494122450 649498379
11 50 483460124 463132605 31 126 494315284 655590018
12 54 484902359 478485476 32 129 494495867 661463338
13 58 1486113092 492550487 33 133 494665328 667130461
14 62 487143953 506334707 34 136 494824665 672602578
15 65. 488032273 519025238 35 140 494974759 677890048
1 70 488805718 531007754 36 143 | --+-00 495116393 | -+~+-01 683002475
17 14 489485225 542339284
18 78 400086934 553079912
19 82, 490623486 563279608
20 86 -+-+00 491104923 | -+~~+01 572982292
TABLE 2
Number of Terms in Polynomials g,(w) for € = 1070
njv {1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 91 10| i 12
2 4 9 16| 25| 36| 44 | s1| 51| 63| 66 68
3 8 | 26 41| 55| 68| 78| 8 | 94 | 100 | 105 | 108
4 16 | 38 61 | 80 | 94| 107 | 116 | 123 | 129 | 134 | 138
5 23 | sl 79 | 103 | 119 | 130 | 140 | 147 | 153 | 158 | 162
6 29 | 63 98 | 124 | 141 | 153 | 162 | 168 | 174 | 179 | 183
7 3¢ 1 76 | 115 | 144 | 161 | 172 | 181 | 188 | 193 | 198 | 201
8 39 | 88 | 131 | 161 | 178 | 190 | 198 | 204 | 210 | 214 | 218
TABLE 3
Values of Polynomials gn(wllgor v=2,3,...,9
and € = 10 &n (—1)
n/v 2 3 4 5 ]
1 -+-+-01 100000000 ~+-+-00 000000000 -+-+01 100000000 %400 000000000
2 ~++00 574218750 471649170 ~+-+00 514083565 493500958
3 524350346 493579552 501950091 499410014
4 511791984 497654126 500512257 499886133
5 506913968 498902382 500187179 499967246
6 504534706 499402706 500083567 499987961
7 .. 503200602 499640263 500042670 499994779
| o ~+-+-00 502378790 . -++-00 499767001 -+--+-00 500023986 -+~+00 499997450




10,

TABLE (3) (continuation)

& (—1)
n/v 6 1 8 9
1 -+~+-01 100066500 -+-+00 000000000 - ~+-01 100000000 —+-+00 000000060
2 -+-+-00 503166812 498460082 ~+-+-00 500757955 499625320
3 500184332 499941564 500018781 499593906
4 500026047 499993924 500001440 4999996§4
) 500005896 499998916 500000203 499999961
6 500G01784 4999¢ :729 500000042 495999993
7 500000657 4995954915 ) 500000012 499999999
8 —-+-+-00 500000279 ~+-+00 499999969 -+-+-00 500000004 -+--+00 500000000
&n (0.9)
nlv 2 3 4 5
S ~+-+-01 271000000 " +-4-01 343900000 -+-+01 409510000 —+-+01 468559000
2 379513669 502745097 603548923 (83191462
3 465154736 616217848 . 728951944 805671402
4 534750921 702685863 810302100 876649253
5 592165371 765175647 864131586 919151447
6 640052359 812026493 900580935 945453072
i 680359149 847645055 925825546 962258737
8 -+~+01 714559216 =01 875091860 ---1-01 943681984 =01 973280487
ga (0.9)
n/v 6 7 8 9
1 -+—+01 521703100 -{—-r«Ol 569552790 ~+-+01 612579511 -+—+-01 651321560
2 745527124 794505173 8333406068 864407012
3 858872447 896390129 923338073 942982300
4 918170518 944881453 $62488431 974301658
5 950618935 0645268937 980639191 987707576
6 969134655 982151385 989534466 $93809779
) 980101908 989255838 994109619 996739593
{ 8 -+—-+-01 986816576 -+~ 01 993325074 -+-4-01 996564564 -1~4-01 998713453
TABLE _fl
Values and Number of Terms in Polynomials g (w) for
v=10, v ..—='11 e = 10710
Yoo ke gn (—1) Zu (0.9) v n | k* &n (=1) Za (09) -
1 17 | ~+~—+01 100000000 | <+~+01 6361894 1 12 | -+-00 000000000 -01 717570464
2 66 | +—00 500185921 ‘ 889446847 2 68 499907501 - 909738646
3 105 500001992 957452897 3 108 ) 499999346 968186289
4 | 134 500000083 | 982321858 4 | 138 499999979 987608189
5 158 * 500000008 992157639 5 162 499999999 994981748
6 179 500000001 996318569 6 183 500000000 997803098
7 198 500000000 998184402 7 201 500000030 998985047
8 | 214 500000000 999064753 8| 218 500000000 999508233
9 229 500000000 999499332 9 233 500000000 |. 999751510
10 10 243 500000000 999722580 10 247 - 500000000 999869609
111 256 500000000 999841422 | 11 | 11 | 260 500000000 © 999929186
12 270 500000000 999506839 : 12 | 273 500000000 999960402
13 282 500000000 999943836 13 | 285 500000000 999977202
14 224 500000060 999965370 14 297 . 500000600 999986558
15 305 500000000 699978167 15 308 500000000 999991863
, 16 316 500000000 999985977 16 319 500000000 995994980
17 326 500009(_)99 999990809 17 329 500000000 999996818
18 336 509(_)@\,(;.::; 999993383 18° | 339 500000000 999997953
19 346 SC\:-«.,:.;\N ) 999995870 19 349 500000000 999998664
. 20 357 | <+-+-00 506000000 | ~+—+01 999997173 20 359 | —+00 500000000 | -+-+01 999999117

e e




11.

Section 2. Series of Polynomials in the
Two-Body Problem

The problem of two bodies may serve as the simplest example of polynomial
series application in celestial mechanics. For the purpose of definiteness let
us consider the case of a nondegenerate elliptical motion. The relative coordi-
nates of the bodies represent in themselves analytical functions of time t, or,
which in fact is the same, of the mean anomaly M. The disposition of these
functions' singularities on the plane M was first studied by Moulton in 1903 [15]
who has shown that the coordinates of singular points depend only on eccentricity
e and are determined by the equality

M=2kn2=iQ (k=0, =1, 22, ...), (32)
where

L=—V1— eé—l—lq 1—.—1{,_ et

. (33)

Forging somewhat ahead, let us point out that the values of 2 for equidis-
tant values of eccentricity are compiled in Table 5.

Since & is rigorously > 0 for any e < 1, the series of polynomials by M for
the coordinates of the elliptical problem of two bodies converge for any real M.
The constuction of these series will be started with the search for the coeffi-
cients of the corresponding Taylor series. Without generality limitation it is
sufficient to consider only two functions

X=cosE—e, Y=V1—esink, (34)

clearly given with the aid of the eccentric anomaly E. Note, by the way, that
these functions are tabulated by arguments of M and ¢ (Innes, 1927 [9]). Inas-
much as E is linked with M by the Keplerian equation

E —e sin E = M, (35)

the Taylor series of these functions have the form

«©

X:E a,‘M2k, Y= 2 bkM2k+l- (36)
k=0

k=0

For the determination of aj and by we shall substitute series (36) into
the differential equations satisfied by the functions

Y
vi—ez '

(1—e*— eX) o = VT — & (e+X).

(1= o) g = (37)




P
o

Introducing at first the scalar multiplier « so that
‘ay, b,=x"b;, (38)

ak——-x ak,

we shall obtain the following system of recurrent formulas:

k—1
(k-+1)(1—e) b, =e 2 Q1) by VT — e @i l

e by (39)
(2k—|—2)(1 e)ak+1-——e> (2_/—#—2)aj+1 — T
(k_1, 2, ) ‘
allowing us to compute in sequence all ai and bi by the initial coefficients
. ) . y 14‘ - 1
a0=1—-e, b.0= '—"——1_: y al::~ _2—(71-—”——-‘——6)21 . (40)
Having determined the coefficients a¥ and bﬁ for the given value of e,
we shall find the sequences of polynomials (2)
my m"———l
[ ] . )2k+1
X® = Ac&'f,)a;.(\/;]ﬂ)u, YW= }J cSRhabi (Ve MY (41)
: k=

Generally speaking, it is possible to find the letter expressions of aj

and by as & function of e. Indeed, assuming

’ (—DF gy . (=1¢WT et}
G T = O G T (42)
we obtain from (39) at « = 1
(7[;':8 ‘_:1 ;{—:515‘_1—1 bk——_y,
.’=
(43)

r—e€ 24 Czkb_]akL_/—i ak

Hence it may be seen that & an b, (k=1, 2, ...) are polynomials from e
power k — 1 with integral pos 1t1ve coeff1c1ents
dk::af.”—i—a o . +a(,.“1e R

(44)

[;A.; b{,k)—}— b - . .. bl e, J
For the coefficients of these polynomials we may derive the following expres-
sions:
af = 2.( D7 (1) 27 G, o,
__ (45)
b‘}“——Z (—1)"*2 ACu+1dx ks
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where B
Iy

N (=1 (e 1 — 25)M R
d), k= 2 ] . 46)

sl{h+1—4)!
=0

The first few polynomials computed by these formulas will be

@ =1, 61 =1,

&, =1-+3e, by=1-+9,

dy;=1-+-24e-+45¢", by==1-1-54e-1-225¢2, (47)
&= 1-1-117e~4-1107¢*+-1575¢", by ==1-1-243¢-1-4131¢*~+-11025¢",

------------------------------

Although formulas (42), (44) - (46) allow us to find the letter values of
the coefficients a; and by, their utilization for computer calculations is hardly
appropriate. Note that for that purpose the Stumpff formulas [26] are also of
little convenience; they have an entirely different structure, but they also allow
us to find the general terms of Taylor series of the two-body problem.

According to the p1ogrdm drawn, at first apkand by were computed for any

d k by formulas (39), then polynomials (41) were comp%t?d for the values of M
1 -¥2 At the same time we utilized the coefficients ¢ =2, 3,4, 5) for
v = 9 and v = 10, indicated in the preceding section. Moreover the exact values
of X(M) and Y(M), obtained by way of the solution of the Keplerian equation, were
also computed. The results of these calculations are compiled in Table 5.

€
b

1] H%

In Table 5 [following pages] the values of X(M) and Y(M) and the correspond-
ing sequences of polynomials (41) are given for each e = 0.05(0.05)0.95 and the
values M = @ and M = 1.12. For M = @, that is, at the boundary of the circle of
series' (36) convergence, polynomials with n = 5 give a practically exact result,
cay a coinrcidence of eight-nine significant numerals. For M = 1.18 such a pre-
cision is not attained here, for an insufficient number of terms was retained in
polynomials g, (w); on the strength of this pol;uomials with n = 5 provide a
precision by one order lesser than the polynomials of the preceding approxima-
tion, namely with n = 4.

In reality, because of the insufficient number of coefficients cf™)
bounded by the value € = 10719, we are compelled to reject for ﬁhe terms - apwX
rising in absolute value and as n increases, the terms c n)a %, so much the
greater in absolute value that the number n of the polynomial is greater.

On account of that, the polynomial's (41) sequences, compiled in Table 6 for
M=1.1¢ end up with the number n = 4.

As already indicated, it is not difficult to extend the computation of Cﬂn)
till as small an € as is de51rab1e Then the sequences of polynomials (41)
may also be applied for great values of M.
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TABLE 5

Convergence of Sequences of Polynomials in the Two-Body Problem

0.05

010

0.15

0.20

0.25

M::Q
X (M)

(2
A
)"(")
X©)
X
Pt
X9
X®

Y (M)
Y
y®
Y@
Yy
Y@
y®
Y@
y®

M=1.1

X (M)
X
X9
XW
X@
X
X@
Y (M)
y@
Y
y“)

y®
Y@

|
> ,.=9 |
|
v=10
> V=9
v=10
Q -
J y=9
1 v=10
v =9
v=10

~-+01 268950465
—-+-00 958468372

958199675

958405524

958468972

958468892

958574814

958469925

958468825

958468877
+—00 417429752
417628485
417433469
417429995
417429720
417584242
417430208
417429744
417429750
295845511
103482062
103404818
103481822
103482074
103520594
1103482357
103482054
173358054
173987066
173367093
173358508
173789176
173359681
173358154

-++-01

~+—00

-+—+01 199823541
—-+00 592093805
591977084
592093646
592093851
592093817
592139531
592094262
592093831
592093811
~+—+00 866178531
866264309
806180134
866178636
866178543
866245286
866178727
8661785217
866178530
01 219805855
—-+00 746905651
746570277
746904564
746905699
747073926
746906919
746905618

~++00 758747618
759018989
758751519
758747815
758934046
758748322
758747661

~+-+01 159590810
——00 322916088
322916551
322915993
322916113

" 322916093
322943331
322916359
322916102
322916090
973948782
973999897
973949738
973948844
973948789
973988532
973948899
973948780
973948782
175549891
470981288
470781408
170980642
470981317
471080349
470982044

~+=+-00

01

~——00

470981269

~+-+00 936370207
936531832
936372532
936370324

936481250 |,

936370627
936370233

~+-+01 131263577
——00 141539652
141483454
141539588
141539668
141539656
141549143
141539836
141539661
141539653
978119666
978154360
978120316
978119709
- 978116672
978146689
978119746
. 978119665

-+——+00

978119666 |.

144369935
272512821
272317111
272512384
272512841
272580056
1272513335

-+--01

——00

272512808 |

-+4-00 977216565
977326226
977218143
977216645
971291902
977216850
977216582

+—+01 109519123,
——01 197627633
197284100
157627169
197627759
197627659
197762224
197628972
197627700
197627640
942233458
942258782
942233931
942233488
942233461
942253068
942233515
942233457
942233458
120471035
132453258
132354457
132452940
132453273
132502193
132453632
132153249
++00 961533328

961613101

961534476

961533386

961588129

961533535

961533340

-+-+00

~+--+-01
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S (continued)

0.50

0.85

0.90

095

X@
X
X
X4
Y (M)
Yo
Y&
y{®
Yy
¥
{8
yoi

)/(5)

M. L1

X (M)
P
/ytl)
xW
X
X
X
Y (M)
)r(’l)
Y
y
y 2
Yt
y®

[ S ~———— —— et

N e s et ol et e s 0, # o et

———

v=9
v=l0|
V=9'
v=10.
i
i
f
1
Vo= |
v = l(ﬂ
y=79
v==10

~+-—01 931471803
+-—00 114062710
114045204
114062713
114062709

114062709

114061732
114062700
114062709
114062710
-+~—00 243343728
243345549
243343763
243343731
243343729
243345140
243343733
243343728
243343728
-+-—00 102461898
-+-—01 997711056
997782900
997711284
997711044
997675536
997710783
997711062

---=00 261817311

261823059
261817394
261817316
261821259
261817326

261817312

-+~—01 583989414
~+—01 887559399
887576901
887559420
887559391
887559397
887552539
587559328
887559394
887559308
—+—00 181520237
181521514
181520261
181520239
181520238
181521228

181520240

181520237
181520237

-+ ~01 647888389
-+—01 785391671
785442091
785391829
785391662
785306744

" 788391478
785391674
+—00 195559880
195563911
195559938
195559883
195562648
195559890
195559880

-—01 312554136
+-—01 611055710
611066672
611055724
611055705
611055709
611051415
611055667
611055708
611055710

=00 120384614
120385413
120384629
120384615
120384614
120385234
120381616
120384614
120384614

_+—01 343809550
-—01 545993255
546024831
545993354
545993248
545977644
545993133
545993256

+—00 129848466
129850989
129848503
129848468
129850199
129848473

1 129848467

+—01 107665341

-+~—01 314321347
314326514
314321354
314321345
314321347
314319323

314321327
314321346
314321347

- 01 598925627
594929391
598925698
598925632
598925627
598928510
595925036
598925627
595925627

-—01 118651930

+—01 283185056
283199937
283185100
283185050
283177696
283184996
283185054

+-—01 646688325

646700213

646688501

646688339

646696 192

646688361

646688332
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Section 3. The Sundman Series in the Two-Body
Problem

The Sundman series coefficients in the two-body problem may be obtained
in a final form. Indeed, assume that function f(w), given in the form (1), is
analytical in an infinite band 2% wide and symmetrical relative to the real
axis w. After applyingthe Poincaré transformation (9) this function may be ex-
panded in power series

SO =02 Al (48)

converging in a circle |6] < 1. As was shown in the above-mentioned work by
Belorizky, in order to find the coefficients Ag, it is sufficient to substitute
in (1) the expansion of w by powers 6, stemming from (9). We then obtain

(%]
A= X a,_yp,, (42)7, (49)

k=0

Here pi9,, are positive numbers, which are coefficients of the expansion

" 03 05 q - ’
(g ) = 2 o, (50)
&=0

Belorizky indicated also the recurrent formulas

sp) oy = (s — 2k) p{730, - (s — 2) PR

(51)

(s=3, 4,.. k=0,1,..., [‘;1:]),

allowing to compute these coefficients in sequence by the initial values
plV=pP=1.

Therefore, if the coefficients of the Taylor series (1) of function f(w)
are known in a final form, the Sundman series coefficients (48) may also be
found by formula (49) in the final form. This is why the knowledge of the com-
mon terms ajy and by of series (36) allows us to write also the common terms
Ay and By of the Sundman series of two bodies

X=2 A,,O”‘,‘v Y= Y Bo%+, (52)

k=0 k=0 -

We have computed all the coefficients pY,, through the number s = 120 in-
clusive. However, they were without use, for it was found to be simpler to find
Ax and By directly, without utilizing their relationship with a, and bk .
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Indeed, as functions of 6, X and Y satisfy the equations

_ é___ _t{)_(______ 40 Y
(1 € eX) - nvli—ez 1—02° ]‘
PVi—et e+ X i (53)
(1—é &X)dﬂ i~

Hence follow the recurrent formulas for the coefficients Ax and By

k-1 , ' k-1
(k1)1 —e) By=e Y (2j-1-1) By, ;v 22Tl (1 - EA,.H) , ]l

J=0 v o J=0

k=1 X (54)
. o :
(2k+2)(1—e JApn=e > (2/-+2) AJ-“Ak_,—‘—V,TiT %' B,
7=0 YTt s
with the initial conditions
: 40 5 /14 802
Ay=1-e, Bu‘—_" Y f‘__(e_,’ Al:.—gfﬁ(i—:’e_ﬁ' (55)

The tollowing actions were taken according to the program prepared:

1) the calculation of A,y and B, by formulas (54) to k = 1700 inclusive;
2) summation of series (52) for the values 6 = 0.05 (0.05) 0.95, whereupon
this summation continued till the simultaneous fulfillment of the conditions
| Ak()uyi < 10—19" lBk(ijﬁ»lf - 10”“’;
3) calculation of M and of the exact values of X(M), Y(M) for these values
4) summation of series (52) for the value of 6 corresponding to M = Zm,
till the fulfillment of the above-indicated conditions, or to k = 1700, if these
conditions arc not satisfied.

It

All these operations were performed for every e = 0.05 (0.05) 0.95. Part
of the results obtained is reflected in the tu.les presented here. The value of
the mean anomaly M is given in Table 6 as a function of e and 6. It is import-
ant to note that to the value M = 2, tl.( is, to the radius of series' (36) con-
vergence, corresponds for any e one and the same value

__exp (w/2) —

= ;,—(;/7.—1‘ ~ 0.65579 42026. (56)

The values of X(8), Y(8) of series (52) for all © from 0.05 to 0.95 coinci-
ded with the exact values of X(M), Y(M). The number k* of the last retained term
in this series is brought out in Table 7, from which it is clear that the Sundman
series coefficients vary very little as a function of eccentricity, inasmuch as
the number of terms in these series 1s mainly determined by the value of © only.
Compiled in Table 8 are the values of X(8) and Y(e) of series (52) for M =2
the corresponding values of 6 and the number k*., The exact values of X(M), Y(ND
in this case will be 1 - e and 0 It may be seen that for e = 0.15, the 1700
terms of Sundman series were alread fnu_nﬂ to be insufficient to assure the preci-
sion in nine decimal signs and for e = 25, even the first ones were already wrong.
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Section 4. Series of Polynomials in the Problem of Three Bodies

The determination of coefficients ay in the problem of three bodies in let-
ter form and, by the same token, the analytical determination of the correspond-
ing coefficients of Sundman series, would have a very great significance and, in
particular, as was shown by Belorizky in [5], to allow basically the solution of
the question of stability by Lagrange. Unfortunately, even the numerical determi-
nation of coefficients ayx for concrete initial conditions is linked with fairly
considerable difficulties. Indeed, the finding of these coefficients by way of
consecutive differentiation of the right-hand parts of equations of motion is in
practice totally unfeasible. The way out of this situation was shown by Steffensen
[24], who proposed to reduce the equations to second power independently from
their order, and then obtain recurrent relations for ay - Steffensen utilized the
power series by t for the representation of the solution of the three-body problem
in a certain neighborhood of the initial moment. lLater, Rauch [22] and Rauch and
Riddel [23] applied the Steffensen method to the problem of n bodies, whereupon
in the first of these works the time t for taken for the independent variable, and
in the second — the regularizing variable w.

We shall consider the equations of the problem of three bodies m;, m,, my 1n
relative coordinates p —pm,m,, Fy==mym,, P,=mm,

8, = —fM L. LN ST ST
Po=—fM 7 —i—f/n‘<r¥ . A r;) (i=1,29. (57)

ra

Here M is the sum of masses, f 1is the gravitational constant and

fl"‘Nfz"”f:’——:Oc (58)

With aid of the force function
mym m;ym mymg -
Us=f(Tem- Iy i) (59)

and of the scalar multiplier «, we shall introduce the regularizing variable
by the formula

dw

"

«Udt (60)

whereupon we shall consider that at t = 0, w= 0. lenoting by a prime the differ-
entiation with respect to w, we shall reduce Eq.(57) to the form

U, 1 .
’:"""U Fi= 3Gz [’—fM:—::;"*’fm‘ ("%—Fr—;—i—%)] (=1, 2, 3). (61)
1 3 rs

r

Let us assume that at the initial moment the following two conditions are
fulfilled :
R
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1) |c] » 0, where

[y X )+ TR (1 X 4] TR [y X A]=C (62)

2) min {r, r,, ry}~0.

The first condition is sufficient for the elimination of the possibility
of triple collisions in the course of the entire time of motion. The second con-
dition, implying the absence of double collision at the initial moment of time, is
not compelling and is utilized only for the sake of simplicity. Without this con-
dition the system (61) ought to be reduced to clearly regularized form by intro-
duction of new variables.

Denoting by A; the squares of mutual distances andby o; the cubes of the
reciprocal values of these distances, we finally obtain the following system of
eighteen equations of second order:

a,=r} (i=1, 2, 3),
2A‘O;+30‘A; = 0 ' (i= 1’ 2’ 3)’
Ve e Vi = — L fmq ' ;
(g VI =g o F g (O 40 Fy+oFy) (i=1,23), (63)
U=/f (mymso,8, 4 myma,8,-+ m,m,o34,), ‘
V=11
Ut =1
for the determination of eighteen unknown functions
F,= 2 f(‘k)mk’ A¢= 2 A(ik)mk' 9, = 2 o(tk)wk (i=11 2"3)’
Yok=0 k=0 k=0 (64)

[e2]

@ o)
U= u®e®, V=2 oM t= 2 "
? .
k=0 k=0 k=t

Note that the utilization of relation (58) allows us to reduce the number
of unknown functions to fifteen, but it would be more appropriate to keep this
relation for the control, and to consider the coefficients #®, A, F" in the
process of computations as' independent. According to quantities £,(0), A(0) given
at the initial moment of time t = 0, we shall find the first coefficients of
series (64)

i'('.°) = f{ (O)’ A(‘o) = I f‘ (0) lz, a(‘o) = l f‘ (0) 'I—a’
u® = f (m,mo P - mym 0P8N -+ m moAP ) |. (65)
xa®

v(°)=[u(°)]’, ,&l):%u%). , M=
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The substitution of (64) into (63) leads to the recurrent formulas for
the determination of subsequent coefficients

k
n— N —
A= 3, pprsn,
. =0
1

r—1
) — e 7 —
9= 2kA® Z (3k — j) dNAE—D,
=0 .

k
) =— - -
ub=f Jgo (mymoAF—9 - mym o NAF—I - m, m o PAF-D),

k .
o) = ¥ yyk=p, (66)
J=
k—1

1 O 1
(k+1) — = . —
AR YO ;>::,[ 7 (/1) (k) ot=Apif+d —

M ppk—geny e gy :
et e A B G 1)+o(21);(’k—-/-—1)_,_og/),(:_;_n)]’

'Y
K—1
fE) — _(k_+lT)_:(—°’— E (j+1) {1y (k—1)
J=0
k=1,2,...).

According to the established program all the coefficients of series (64)
were computed to the number k = 157 inclusively, and then sequences of polyno-
mials (2) were constructed with the aid of the convergence multipliers ct
of the first section (n =2, 3, 4, 5; v="9 and v= 10).

The coefficients a, in the three-body problem, that is, the coefficients
of series (64) were obtdined by us for four examples. These coefficients are
denoted in the following respectively as ayx(1), ax(2), ax(3) and ax(4). As
a first example we took the Lagrange solutions, but the corresponding coeffi-
cients ap (1) were utilized only for various control actions. As a second exam-
ple we considered the plane hyperbolic-elliptic-type motion studied by Zumkley
in 1941 [31] by the numerical integration methcd. In this motion all the three
masses are postulated equal to unity, and the initial conditions are:

Fi=( 2.5, 0, 0), 1=(0, 2.5, 0),
f2=(_l'5’ 09 0)’ r2=(0, —l: 0)1 (67)
Fa=(—1, 0, 0), #=(0, —1.5, 0).

-

In the Zumkley work the values of F, Py, P35 are given with three marks after coma
for t =0 (02) 2.8 and t = 2.8 (0.1) 10. During that time the mass m, effects
about 2.5 convolutions around the mass m;, and the mass m, drifts away from
the first two along a hyperbolic-type curve.

The third example is based upon the Stromgen work of 1909 [21]. In this
case m; =m =1, my = 2 and at the moment of time t = 0
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n=(=10, 0, 0 #,=(0, =} =, 0) ,
Y i R
=0V 5+V3 0.

The following denotations were adopted in the Strdmgren work: m,= A4, m,=2B,

I

i

rs=( 17, 0, 0),

my=C, P,=—F, P,=F,, and t = —0.5 was taken for the zero moment of time;
the values of ¥4 and 1, for t = 0.5 (1) 215.5 were given with a precision 6
to three decimals after Coma. During that moment of time the mass my per-

forms four convolutions around the mass m; , and the mass m3 drifts away from
them along a strongly elongated elliptical-type curve.

Finally, as a fourth example a plane motion with close double rapprochements
was taken, which was investigated by Burrau in 1913 [6]. Here m o= 5, m, =4,
m; =3 and for t =0

Fi=( 3, —4, 0), #=(0, 0, 0),
f2=( Ov 4, 0)) ’%2:(0) On 0)) (69)
Fa=(—3, 0,0), F=(0, 0, 0).

Inasmuch as in this motion the constant C of the area integral is zero, and
by the same token the possibility is not excluded of a triple collision, one may
not assert that the polynomial series converge in this case for any real t. But
it was interesting to apply the polynomial series to this type of motion also.
Burrau provides the values of r, and r; with a precision to 4-5 decimals after
coma for t, varying irregularly from 0 to 3.35. At t = 1.88, there takes place
a close rapprochement of m; and m,, and for t = 2.9 - a close rapprochement of
m, and m,.

The sequeunces of polynomials were constructed for all three indicated cases
for various values of «. The values of « themselves were so assorted that the
corresponding coefficients g, vary sufficiently slowly and that all possible mutual
products, figuring in (66), %o not come out of the range of numbers represented
in the computer M-20. Found subsequently were the values of the constructed poly-
nomials in the series of points w. The mnst characteristic results are compiled
in Tables 9 - 11. * The data of these tables illustrate the convergence of the se-
quences of polynomials, interpolated after the result of Zumkley, Stromgren and
Burrau at corresponding moments of time. The last numerals of these values are
obviously approximate. The value w = 1 corresponds approximately to 1/3 convolu-
tion of m, relative to m; in the example 2, and 1/ " convolution of m, relative
to my in the example 3. As may be seen from the ta%les, the rapidity of conver-
gence of polynomial sequences leaves in these cases nothing to be desired.
However, the increase of w or, which is the same, the decrease of x at constant
w =1 leads to a rapid deterioration of convergence. In order to broaden the
region of effective application of sequences of polynomials it is necessary, on
the one hand, to increase the number of coeffic'e?ts ak , and on the other hand,
to lower the limit e, set at calculation of cEn

* The values interpolated according to the results of Zumkley, Stromgren
and Burrau to the corresponding moments of time are indicated in Tables 9-11
by a star



TABLE 6

Values of the mean anomaly M corresponding to the Poincare Transforma-

tion in the two-body problem

, , , .
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25 | G700 140§ 2111 2831 356, 432 S10| SY1| 670 766 0.5620.J67 |1.081 11.20) [1.357 |1.532 11.752 12.053 | 2.554
301 059] 1187 177] 2370 2997 3631 428| 4961 s38| 6i3| 721| 8i2,0.908(1.016(1.140 {1.287 |1.471 [1.724 | 2.145
351 09| 0991 149! 200 2521 305| 360] 4ls, 473] Sil| 600 633] 761,0.85510.95) [1.083]1.238 |1.451 | 1.805
40 | 041] 083] 125] 168| 2111 256| 3031 3511 4011 455| 512| 574 642} 718| 805 0.910|1.010 1.219 | 1.517
45 | 035) 069! 105| 140] 177| 2141 253(-2)3| 336 350| 423 480( 537| 600, 673| 7560/0.870(1.0191.268
50 1 0200 058! G87{ 1161 147] 178] 210| 23| 278| 315] 355| 398 445| 498 559| 631| 721]0.845|1.052
é 551 G24' 047] 071 005] 120] 1456| 1721 199| 228| 259 291] 326 305| 403 458| 517! S91| 693|0.862
60 0190 6281 057) 077) 07} 118 139 161} 184] 207] 235! 25%| 295] 330| 370| 4i8| 478| 560{ 696
{65 | OIS| 630} 045) 051) GI7] (03] 110| 127 146} 165| 1861 208 233| 261{ 2)3| 330| 378( 443| 551
| 700 012] 023] 035 0¥7] 059 072! O8] .098| 112| 127| 143| 160| 179 200 225| 254| 290| 310| 423
1 751 007 017! 026| 035| 041 0S3} 062| 072 083] 0)4| 105! 118, 132| 148| 166| 187 214| 251| 312
P80 | 006 012) 018] 021] 030| 037] 03| 050| 057! 055| 073| 082 032| 103| 115| 130| 149 175| 217
. 851 004! 008! 011 0iS| 019] 023} 027| 032] 035! 0il| 016 052 058 065| 073| 082 04| 110| 137
| 90| 002] 004| 005] 008| 010] 012! @15| 017} 019| 022\ 025 028 031| 035| 039| 04| 0S0| 059| 073
: 95{ 001| 001| 002| 003| 004| 001| 005| Ov6{ 007! 008| '008| 010| O11| 012} 013| 015| O17| 020| 025
TABLE 7
Number of terms in the Sundman series of the two-body problem
or0] 015 020] s o50] 038! oao] g8 '
ejt | 0.05 ' 0.10 0.15i uzoi 0.25 oAzoi 0.35 0.401 Msi o.sol 0.55 ().601 0.65‘ 0.70| 0.75 ' 0.80( 0.85{ 0.90( 0.95
| .
! | | . J ' ' |
005! 8 (10112 e lae | w el los o a7 as ] st e | s o1 |13t ] 199 | 4o
101 8 | 10 \ 12074 016 018 2L ) 26 p 27 0 31 536 42 ] 49 | 60 ] 741 96 | 129 | 196 | 396
T1s 7 1012 bao bas o0 |23 027 0310 135 | a1 49 | 9 | 72 | 93 | 127 194 | 396
20| 8 9 P11 0315 L 18 120 4 23 | 27 | 31| 35 4l | 48 | 58 | 71 | 91 | 125 | 190 | 387
250 8 |10 | 11| 13 (15| 17 [ 20 [ 23| 26 | 30 | 35 | 40 | 47 | 57 | 71 | 91 | 123|189 | 381
300 8 | 100 12 13 0 15 | 18 | 20 1 220 26 1 30 | 34 | 40 | 47 | 56 | 70 | 89 | 122 | 185 | 375
350 8 11000012 0013 0015 | 18 | 20 ] 22 25 | 30 38| 40 | 46 | S6 | GY | 88 | 120 | 184 | 370
G0 8 [ 1oz 13 15 18 20 1 22| 26 130 | 31 40 | 46 | 56 | 68 | 88 | 120 | 184 | 368
451 8 (10 11 D I3 115 | 18 | 20 | 22 26 { 30 | 34| 40 | 46 | 56 | 63 | 88 | 118 | 182 | 366
SO 8 | 10 ] 11 ] 13 {15 | 18 | 20 | 22| 26 | 30 | 31| 40 | 46 | 56 | 68 | 88 | 118 | 180 | 362
550 8 | 10 111 ) 13 ] 1S | 18 | 20 | 22 |.26 1301 34 40 | 46 | 56 | 63 | 88 | 118 | 180 | 362
60| 7 |10 111 | 13| 151 17 {20 | 22 {726 | »» 31| 39 | 46 | 56 | 68 | 88 | 118 | 180 | 362
65 7 9 11 13 15 17 20 22 24 2) 34 | 39 46 56 68 87 { 118 | 180 | 362
70 7 9 l 11 13 15 17 20 | 22 | 26 29 | 8341 32 | 46 551 68 1 87 | 118 | 180 | 360
75 1% 17 9 11 113 | 15 | 17 ] 20 22 | 2> | 29| 31| 39| 46 | 55 | 68 | 86 | 118 | 178 | 360
80| 7 9 } 11 ' 1301517119 | 22| 25|29 |33 |3 46 | 54 | 67 ] 8 | 117|178 | 358
85| 7 9 11| 13| 15| 17.{ 19 | 22 | 25 | 29 1 33 | 38 | 45 | 54 | 67 | 85 [ 116 | 176 | 354
S0 | 7 9 | 1 P13 015 | 17| 19 | 22| 25 ) 28133138 | 45 | 54 | 66 | 8% | 114 | 174 | 350
95| 1 9J 11,12 ;14 |16 { 19 | 21 | 24 | 28 | 32 | 37 | 44 | 53 | 65 | 83 | 112 | 171 | 344
TABLE 8
Sundman series of the two body problem for M = 2

e 0 X () Y (6) k*

0.05 -++-00 950287098 ~+--+-00 950000000 +—09 669605829 402

10 --+00 985740598 ~+~+00 900000000 ——08 174681954 1359

15 —+-+00 995845471 -+--+00 850000024 +—07 238028237 1700

20 -+--00 998505153 -+—+00. 808408547 +—01 102373872 | . 1700

25 4-4-00 999756096 |. +—+-00 941355536 ——00 450587949 1700
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TABLE 9
Convergence of sequences of polynomials forw = 1 in the
case ay (2), 1k = 3.25
t ! n X2 L] X3 L]
1.810002 0.616739 3.306870 ~1.123508 | —2.112387 | 0.506769 —1.194483
1.810016 0.616707 3.306863 —1.123587 | —2.112464 | 0.506880 —1.194399
1.810016 0.616707 3.306862 —1.123587 | —2.112465 | 0.506880 -1.194397
1.810008 0.616695 3.306867 —1.123628 | ~2.112416 | 0.506933 -1.194451 |
1.810017 0.616707 3.306862 —1.123588 | —2.112465 | 0.506881 —1.194397
1.810016 0.616707 3.306862 —1.123587 | ~2.112465 | 0.506880 —1.194397
1.810016 0.616 3.305 —1.124 —2.114 0.507 —1191 -
TABLE 10
Convergence of sequences of polynomials for w= 1 in the case
a (3), 1/ «=16.25
n ¢ X1 Y1 Xz Y2 X3 LK
2 33.289911 ~2.769217 -18.344155 | 6171048 | —2.623783 | —3.401831 20.967938
31 =9 33.290375 ~2.769527 ~18.345743 | 6.171168 | —2619614 | —3.401641 | 20.965357
g {¥= 33.290350 ~2.769503 —18.345775 6.171044 —2619510 | —3.401541 20.965284
5 l 33.290346 —2.769500 ~18.345775 6.171030 ~—2.619506 | —3.401529 20965281
2 33.290493 —2.769972 —18.345172 6.172521 | —2.620804 | —3.402549 20.965976
31 =10 33.290362 —2.769509 —18.345780 6.171074 —2.619498 | —=3.401565 | - 20.965278
V= 33.290346 —2.769500 |- ~—18.345776 6.171030 —2.619504 | —3.401530 20.965280
5 l 33.290345 —2.769500 ~18.345775 6.171028 —2.619505 | —3.401528 20.965281
33.290346 2769497 | 18345773 6.171027 '-‘-2.619508
TABLE 11
Convergence of sequences of polynomials for w= 1 in the case
ag (4), 1/x= 40
t Xy un X2 ¥2 X3 y3
1.8587 1.1933 - -2.8221 —0.9459 2.8775 —0.2474 ~0.0554
1.9001 1.0567 —2.7831 —1.0335 2.8127 —0.0232 + =—0,0296
1.8815 . 1.0548 —~2.8114 —1.0519 2.8480 —0.0029 - —0.0366
1.8799 1.0649 —2.8114 —1.0438 2.8495 —0.0211 —0.0381
1.8799 —1.05367 2.84051 -+-0.00137 —0.01863
1.8868 1.1686 —2.7810 —0.9390 2.8242 —0.2296 —~0.0432
1.8936 1.0402 - ~2.7966 —1.0551. 2.8274 -+0.0149 —0.0307
1.8784 1.0615 —2.8144 —1.0483 2.8527 —0.0132 ~0.0384
1.8804 1.0667 —2.8102 —1.0417 2.8483 —0.0250 —0.0381
1.8804 —1.04898 2.84388° | —0.00875 —0.02783
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The fourth example was found to be much more complex, as should have been
expected. According to data of Table 11, the convergence of the sequences of
polynomials is in this case very slow, so that even the second decimal point
in polynomials with n = 5 may be erroneous by 1 - 2 units. Such a poor conver-
gence is explained by the following causes. First, the values w =1, 1/« = 40
correspond precisely to the moment of time of close rapprochement of m; and mp,
when all the coordinates vary very rapidly. Secondly, by virtue of the irregu-
lar character of motion, the coefficients ay (4) do not vary monotonically
as ay (2) and ay (3) do. Because of clﬂi? rapprochement near the initial moment
of time the coefficients ullk)) vK) and o®) for the corresponding number i are
great in absolute value, and this is why the coefficients T are computed with
a great loss of precision. Undoubtedly, in such cases it is better to bring the
system (61) to a clearly regularized form beforehand.

CONCLUSTION

The results of this work shows that the series of polynomials may apparent-
ly be utilized for the numerical solution of the problem of three bodies. Contrary
to the standard numerical integration by steps, the solution is here made in the
form of finite analytical expression (2), valid for all w from zero up to a certain
maximum value. This maximum value may be made as great as may be desired by in- -
creasing the number n of the polynomial and of its power mj,. Obviously, too much
may not be expected of polynomials (2), inasmuch as even fast converging power
series of trigonometrical functions are effective only at a sufficient proximity
to the initial point.

The effectiveness in the utilization of sequences of polynomials represent-
ing the general solution of the three-body problem may be improved in numerous
ways. First of all, as already pointed out more than once, the number of terms
in the polynomials (2) may be significantly increased. After ol:taining polynomials
(2) they may be subjected to convolution with the aid of Chebyshev polynomials,
decreasing in this way their power. Secondly, one may attempt to extend the search
for the most effective convergence factors c (), Thirdly, other types of expan-
sions may be tested, for example in series of polynomials in the Mittag-Leffler
rectilinear star. Let us recall in this connection the Markushevich expansion of
1944 [1]

] my

Ju)= 2Pt 2 (1—1)at, (70)

generalizing (2). Here-yé“) are certain real numbers, such that
T AT TN P renlL S & e 7
Ry T 1=y [T =1, (0

.and {/} and {my} are certain sequences of natural numbers approaching the
infinity alongside with n.
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Finally, one more interesting possibility should be mentioned, namely, the
representation of the general solution of the three-body problem in the form of
series by Hermite polynomials. The convergence region of these series is the band
|Im(w) | < const. Without investigating the question of convergence of coordinate
expansion in Hermite polynomial series in the three-body problem over the entire
analyticity |Im(w)|< 2, let us only point out that these coordinates satisfy
the well known simple and sufficient conditions for the convergence of the series
of Hermite polynomials of function f(w) over the entire real axis:

1) F(w) is a piecewise-smooth function in any finite interval of that axis;
«©
2) the integral I|m|f2@0exp(—4ﬂ)dw has a finite value.
-—CD
In the expansion by llermite polynomials, just as also in the expansion in
series of polynomials in the rectilinear Mittag-Leffler star, the quantity does
not appear anywhere in explicit form, as this takes place in the Sundman series,
and this is why one may hope for a more rapid convergence of these expansions
by comparison with the convergence of the Sundman series.
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